Optikai alapmérések

Asztalos Bogdán (7. mérőpár)

mérés időpontja: 2017. 04. 25. jegyzőkönyv leadásának időpontja: 2017. 05. 02.

1. Geometriai optika I.

A mérés célja

A mérés során a fénytörés jelenségét vizsgáljuk egy műanyagból készült alakú lencse, és prizma segítségével. A cél, hogy igazoljuk a Snellius-Descartes törvényt, miszerint különböző felületek határán az α beesési, és β törési szög közötti összefüggés:

 $\sin \alpha = n \sin \beta$

ahol \boldsymbol{n} a két anyag találkozására jellemző törési mutató.

A mérés eszközei

- Forgó optikai pad, a szélén szögbeosztással
- Lézer
- Soksugaras fényforrás
- Műanyagból készült félkör alakú lencse
- Műanyagból készült 60°-os prizma

A mérés menete

Először a lézer elhelyeztük úgy az optikai pad mellé, hogy a kijövő fénysugár pont keresztülmenjen a forgási középpontján. Ezután a lencsét rátettük az optikai padra, úgy, hogy annak is a középpontja pont a pad forgási középpontjára essen. Így a lézersugár mindig áthalad a lencse középpontján ahol megtörik, és továbbra is sugárirányba folytatja útját. Emiatt, amikor a lézer a lencse körlapján halad keresztül, a beesési szög merőleges, ezért ott nem történik törés.

A lencsével két mérést végeztünk, először a lencse egyenes oldalát állítottuk a lézer felé, így a fénysugár a levegő-műanyag határon tört meg. Ezután megfordítottuk, és a kerek oldalát állítottuk a lézer felé, így a fénysugár a műanyag-levegő átmeneten tört meg, így összehasonlíthatjuk, hogy a két törésmutató hogyan aránylik egymáshoz.

Ezután a soksugaras fényforrást tettük az optikai pad mellé, a padra pedig a prizmát, és megvizsgáltuk, hogy a fénysugarak milyen úton haladnak benne.

Hibák

- A szög hibás leolvasása
- A forgó korong esetleges rossz alapbeállítási

Kiértékelés

A lencsén átmenő fény beesési és törési szögére vonatkozó mért adatokat az 1. táblázat tartalmazza.

Abrázolva a beesési szögek szinuszát a törési szög függvényében, látható, hogy egy egyenesre esnek, vagyis a fénytörésre valóban teljesül a Snellius-Descartes-törvény. Az

Levegő –> Műanyag				Műanyag –> Levegő			
α [°]	sin(α)	β [°]	sin(β)	α [°]	sin(α)	β [°]	sin(β)
0	0,0000	0	0,0000	0	0,0000	0	0,0000
10	0,1736	6	0,1045	10	0,1736	15	0,2588
20	0,3420	13	0,2250	15	0,2588	22	0,3746
30	0,5000	19	0,3256	20	0,3420	30	0,5000
40	0,6428	25	0,4226	25	0,4226	39	0,6293
50	0,7660	30	0,5000	30	0,5000	48	0,7431
60	0,8660	35	0,5736	35	0,5736	58	0,8480
70	0,9397	39	0,6293	40	0,6428	73	0,9563
80	0,9848	41	0,6561				

1. táblázat. A lencsén átmenő fény törésére vonatkozó mért adatok

adatokat az 1. ábrán ábrázoltam, és mindkét esetben megillesztettem a rájuk illő egyenest. A Snellius-Descartes-törvény értelmében az egyenesek meredeksége a felületre jellemző

1. ábra. A beesési szög a törésszög függvényében (a) a levegő-műanyag felületen (b) a műanyag-levegő felületen

törésmutató, így a műanyagnak a levegőre vonatkoztatott törésmutatója: $n_{m,l} = 1,4959$, míg a levegőnek a műanyagra vonatkoztatott törésmutatója: $n_{l,m} = 0,6702$. A két érték szorzata: $n_{m,l}n_{l,m} = 1,0026$, vagyis nagyjából 1, ami megfelel a várakozásnak, hiszen a két törésmutató elméletileg egymás reciproka.

Teljes visszaverődés akkor léphet fel, amikor a fény az optikailag sűrűbb közegből lépne ki az optikailag ritkább közegbe. Jelenleg, az optikailag sűrűbb anyag a műanyag, ezért is nem tudtunk elmenni 90°-os beesési szögig. A teljes visszaverődés határszögének szinusza elméletben a ritkább közegnek a sűrűbb közegre vonatkoztatott törésmutatója, vagyis jelen esetben: $\alpha_{tv,elm} = \arcsin n_{l,m} = 42,08^{\circ}$. A mért határszög: $\alpha_{tv,mert} = 43^{\circ}$, vagyis nagyjából megfelel az elméletnek.

Ezután a prizmát tettük az optikai padra, amit a soksugaras fényforrással világítottunk meg. A prizmában a fénysugarak egy része megtörik, egy része visszaverődik, ami a sok párhuzamos sugár miatt igen látványos. Ennek vázlatos rajzát a ??. ábra ábrázolja. Ahhoz, hogy a prizma túloldalán teljes visszaverődés lépjen föl, és ne lépjenek ki a fénysugarak, a prizmát 4°-kal kell elfordítani ahhoz az állapothoz képest, amikor a beérkező

2. ábra. A prizmán áthaladó fénysugarak útja vázlatosan ábrázolva

sugarak párhuzamosak az egyik oldallal.

Ezen kívül, a prizma túloldalán kilépő fénysugarak színesek, mert a különböző színű fénysugarak a műanyagban különböző sebességgel terjednek, íg a fény különböző színű komponensei máshogy törnek meg.

2. Geometriai optika II.

A mérés célja

A leképezési törvény alapján vékony lencsék képalkotására teljesül az alábbi egyenlet:

$$\frac{1}{f} = \frac{1}{k} + \frac{1}{t}$$

ahol t a tárgy, k a kép távolsága a lencsétől, f pedig a lencse fókusztávolsága. Mérésünkben ezt a törvényt bizonyítjuk egy gyűjtőlencsével, majd egy szórólencse képalkotását tanulmányozzuk.

A mérés eszközei

- Fényforrás, egy kereszt alakú tárggyal
- Két gyűjtőlencse, és egy szórólencse (10 cm-es, 20 cm-es és -15 cm-es fókusztávolsággal)
- ernyő
- Optikai pad, ami mentén a fenti eszközöket egy egyenes mentén mozgathatjuk

A mérés menete

Ha a tárgyat, és az ernyőt adott távolságra helyezzük egymástól, akkor közéjük helyezve a lencsét, két olyan pont is van, ahol az ernyőre a lencse éles képet vetít. Ilyenkor a lencse-tárgy távolságra, és a lencse-ernyő távolságra, mint tárgy és képtávolságra, teljesül a leképezési törvény, amit a mért adatok alapján már igazolhatunk.

A szórólencse nem alkot valós képet, amit ernyővel felfoghatnánk, csak virtuális képet, amit a lencse túloldalán úgy érzékelünk, mintha onnan jönnének a fénysugarak. A szórólencse mögé téve egy gyűjtőlencsét, akkor annak a képalkotása olyan, mintha a tárgy valóban a virtuális kép helyén lenne. Megvizsgálva, hogy a gyűjtőlencse mikor alkot éles képet a tárgyról, kiszámolható a viruális kép helye, amiből a szórólencse fókusztávolsága.

Hibák

- Az éles kép megállapításának hibája
- Leolvasás hibája

Kiértékelés

Először az $f_{1\ hiv} = 10\ cm$ -es fókusztávolságú lencsével mértünk a tárgy és az ernyő között azokat a helyzeteket, ahol éles képet ad. A különböző tárgy-ernyő távolságok esetén az éles képnél mért tárgy és képtávolságokat a 2. táblázat tartalmazza.

A leképezési törvényt átalakítva: $\frac{1}{k} = \frac{1}{f} - \frac{1}{t}$, vagyis a képtávolságok reciprokát ábrázolva a tárgytávolságok reciprokának függvényében, egy -1 meredekségű egyenesre kell

d [cm]	k1 [cm]	1/k1 [1/cm]	t1 [cm]	1/t1 [1/cm]	k2 [cm]	1/k2 [1/cm]	t2 [cm]	1/t2 [1/cm]
100	88,0	0,0114	12,0	0,083	12,8	0,078	87,2	0,0115
90	77,0	0,0130	12,3	0,081	12,1	0,083	77,9	0,0128
80	67,4	0,0148	12,6	0,079	12,4	0,081	67,6	0,0148
70	57,1	0,0175	12,9	0,078	12,9	0,078	57,1	0,0175
60	46,6	0,0215	13,4	0,075	13,3	0,075	46,7	0,0214
50	34,8	0,0287	15,2	0,066	15,0	0,067	35,0	0,0286

2. táblázat. A 10cm-es fókusztávolságú lencse által alkotott éles képek esetén a tárgy, illetve képtávolságok

3. ábra. A képtávolságok reciprokai a tárgyávolságok reciprokainak függvényében

illeszkedniük, melyek tengelymetszetei a lencse fókusztávolságának reciproka. Az adatokat a 3. ábrán ábrázoltam, és egyenest is illesztettem rá.

Mint látható, az illesztet egyenes meredeksége 5 tizedesjegy pontossággal -1, tehát a leképezési ez alapján igazolódni látszik. A tengelymetszetek $0,0948\frac{1}{cm}$, ami alapján a fókusztávolság $f_{1\ mert} = 10,5\ cm$, ami elég közel van a hivatalos 10 cm-hez.

Ezután az $f_{3\ hiv} = -15\ cm$ fókusztávolságú szórólencsét, és az $f_{2\ hiv} = 20\ cm$ fókusztávolságú gyűjtőlencsét egymás elé rakva úgy állítottam be, hogy a tárgyról az ernyőn éles kép jelenjen meg. Ezután a szórólencsét elvennem, és a tárgyat előrébb toltam, addig, hogy az előzőleg beállított gyűjtőlencse az ernyőn újra éles képet hozzon létre. A mérés paramétereit a 3. táblázat tartalmazza.

	[cm]
Szórólencse helye:	30,0
Fényforrás/tárgy helye:	10,0
Gyűjtőlencse helye:	57,8
Ernyő helye:	98,8
Fényforrás új helye:	21,5

3. táblázat. A szórólencse képalkotása során mért adatok

A gyűjtőlencsét úgy állítottuk be, hogy a szórólencse által alkotott virtuális képről éles képet hozzon létre az ernyőn. A szórólencse elvétele után a tárgyat el kellet mozdítani, hogy a gyűjtőlencse újra éles képet alkothasson, tehát a tárgy új helye a virtuális kép helyével azonos. Ezek alapján, a szórólencse tárgytávolsága 20 cm, képtávolsága -8,5 cm, így a fókusztávolsága a leképezési törvény alapján $f_{3\ mert}=-14,8\ cm.$

A gyűjtőlencse által érzékelt képtávolság 36,3 cm, képtávolsága 41 cm. Kiszámolva fókusztávolságát: $f_{2\ mert} = 19,3\ cm$. Ezek a mért értékek szintén elég közel vannak az eszközök hivatalos adataihoz.

3. Fizikai optika

A mérés célja

Kis résen áthaladó fény, a rés túloldalán elhelyezett ernyőn interferenciaképet fog alkotni. A jelenség a hullámoptika törvényeivel magyarázható, ami szerint az ellentétes fázisban érkező hullámok kioltják egymást, így az ernyőn lesznek világosabb, és sötétebb foltok.

Az elméleti törvényekből belátható, a rés a szélessége, a fény λ hullámhossza, a rés és az ernyő D távolsága, egy adott folt az interferenciakép középpontjától mért y távolsága, és a középponttól számított n sorszáma között az alábbi összefüggés áll fenn:

$$a = \frac{n \cdot \lambda \cdot D}{y}$$

Mérésünk során ezt az összefüggést próbáljuk igazolni.

A mérés eszközei

- Optikai pad
- Többfajta rést tartalmazó lemez
- 670 nm hullámhosszúságú fényt kibocsátó lézer
- Ernyő
- Vonalzó

A mérés menete

A lézert az ernyőre irányítottuk, majd a fény útjába betettünk egy adott szélességű rést. Ennek hatására az ernyőn kialakult az interferenciakép, és megmértük, hogy az első illetve a második kioltási helyek milyen messze vannak egymástól. Ezekből kiszámítható y értéke. Mivel λ és D értéke adott volt, ezért így kiszámolhattuk a használt rés szélességét, amit összevethetünk a feltüntetett értékkel.

A mérést három réssel végeztük el, egy 0, 04 mm-es, egy 0, 08 mm-es és egy 0, 16 mm-es résszel.

Hibák

- A különböző berendezések egymástól való távolságának mérési bizonytalansága
- A kioltási helyek egymástól való távolságának mérési bizonytalansága
- Kísérleti berendezés hibás beállításai

Kiértékelés

A mért értékeket a 4. táblázat tartalmazza. r jelöli a rések feltüntetett szélessége, m_1 és m_2 az első illetve második kioltási helyek egymástól való távolsága (azaz az y értékek kétszerese), Δm_1 és Δm_2 pedig a mérési bizonytalanság, ami a vonalzó beosztása miatt mindenhol 1 mm.

r [mm]	m1 [cm]	∆m1 [cm]	m2 [cm]	∆m2 [cm]
0,04	4,3	0,1	7,6	0,1
0,08	1,8	0,1	3,6	0,1
0,16	0,9	0,1	1,9	0,1

4. táblázat. Az elhajlási képen mért adatok

Az ernyő távolsága a réstől 105, 5 cm, és további 1 mm a mérőszalag beosztása miatti bizonytalanság. Ezekből az adatokból, és a 4. táblázat adataiból kiszámolható az adott rész szélessége a fent leírt képlet alapján. A mért adatokból számolt résszélességeket és azok relatív hibáit az 5. táblázat tartalmazza. Mint látható, a kapott értékek nem sokkal

r [mm]	a1 [mm]	δa1	a2 [mm]	δa2
0,04	0,033	0,024	0,037	0,014
0,08	0,079	0,057	0,079	0,029
0,16	0,157	0,112	0,149	0,054

5. táblázat. A mért értékekből számolt résszélességek

különböznek a rések hivatalos értékeitől.

Diszkusszió

Mindkét geometriai optikai mérésnél beláttuk, hogy a bizonyítandó elmélet igaz, és a mérendő értékek is egyeztek a hivatalos adatokkal a hibahatáron belül, így ezek a mérések sikeresnek mondhatók.

A kapott értékek a hullámoptikai mérésnél is jól megközelítették a hivatalos értékeket, de ott már több esetben is a hibán kívülre estek. Ennek oka, hogy a mérések közül ennél volt legnagyobb a bizonytalanság a kis távolságok mérése miatt.