Transzmissziós elektronmikroszkópia

Alkalmazott fizikai módszerek

jegyzőkönyvet készítette: Asztalos Bogdán (Fizikus MSc.)

mérés időpontja: 2019. 10. 10. jegyzőkönyv leadásának időpontja: 2019. 10. 23. mérőtársak: Boldizsár Bálint, Kurgyis Bálint mérésvezető: Lábár János

Tartalomjegyzék

1.	Mér	és leírása	2
2.	Kali	bráció	3
3.	Össz	zetett minta vizsgálata	5
	3.1.	Indexelés	5
	3.2.	Zónatengelyek	10
	3.3.	Közös irány, és az orientáció	10

1. Mérés leírása

A mérésünk célja az volt, hogy miután előző félévben megismerkedtünk a transzmissziós elektronmikroszkóp működésével és használatával, egy összetettebb problémát is megoldjunk a használatával. A labor során egy polikristály diffrakció elkészítésével kalibráltuk a mikroszkópot, majd egy Al₂O₃ hordozóra felvitt GaN réteg irányítottságát vizsgáltuk.

Az elektronmikroszkópok működési elve részletesen le van írva a mérésleírásban [1], ebben a részben csupán röviden összefoglaljuk az alapokat. Az elektronmikroszkópot az optikai mikroszkóphoz hasonlóan kis méretű objektumok szerkezének vizsgálatára használják, de mivel a nagy energiával rendelkező energiájú elektronok de Broglie-hullámhossza nagyságrendekkel kisebb, mint a látható fényé, vagy akár a röntgené, ezért jelentősen jobb felbontás érhető el az elektronmikroszkóppal. Az elv hasonló az optikai vizsgálatok vizsgálatával: az elektronhullámot – miután az elektronok elérték a megfelelő energiát – lencséken keresztül a vizsgált tárgyra irányítják, amin az elektronok szóródnak, és a tárgy mögött diffrakciós, vagy valódi kép képződik le az ernyőre (ami esetünkben egy detektor). Mivel az elektronok töltött részecskék, ezért a lencsék szerepét tekercsek látják el, amiknek a mágneses terében az elektronok pályáját úgy módosítjuk, ahogy azt szeretnénk.

A mi gyakorlatunk során 200 keV energiájú elektronokkal diffrakciós vizsgálatokat végzünk, így a tárgy mögötti optikai rendszert úgy állítottuk be, hogy a diffrakciós kép képződjön le a detektorra. A diffrakciós kép a tárgy Fourier-transzformáltjaként értelmezhető, tehát a kapott kép a tárgyban felvehető rácsvektorok reciprokbázisán értelmezhető. Ahhoz viszont, hogy a pontos méreteket mérni tudjuk, kalibrálni kell a mikroszkópot, azaz meg kell tudnunk mondani, hogy a kapott képen lévő távolságok mekkora távolságnak felelnek meg a reciprokrácson. A kalibrációhoz mi nikkel polikristály mintát használtunk, amiben minden szem (kristályszemcse) máshogy állt, így a diffrakciós képe nem szabályos pontrács lett, hanem koncentrikus körökből állt. A körök sugarára levezethető az alábbi összefüggés:

$$\frac{R_i}{L} = \frac{\lambda}{d_i} \tag{1}$$

ahol R_i az *i*. kör sugara, *L* a kamerahossz (ez a mikroszkóp paramétere), λ az elektronok hullámhossza (az általunk használt 200 keV energia mellett $\lambda = 0,0251$ Å), d_i pedig az *i*. diffrakciós gyűrű létrejöttéért felelős síkseregek távolságát. Mivel a nikkel anyagszerkezete ismert, ezért d_i értékeit kikeresve, *R*-eket pedig megmérve, megkaphatjuk *L* értékét is.

A kalibráció után kicseréltük a mintát egy másik mintára, amely egy Al_2O_3 hordozóból és egy rá felvitt GaN rétegből állt. Készítettünk felvételt a hordozó tartományáról, a réteg tartományáról, majd egy olyan tartományról is, ahol mindkettő látszódik. A diffrakciós képek indexelését elvégezve, meghatározható a felvételeken a zónatengelyek iránya, és ezeket összehasonlítva egymással, kiszámítható, hogy a két egymásba ágyazott minta orientációja iránya mennyivel tér el egymástól.

1. ábra. A nikkel polikristály diffrakciós képe. A körök sugármérését a vízszintes sötétkék vonal mentén végeztem. A mérési pontokat és indexeit a világoskék vonalkák és számok jelzik.

2. Kalibráció

A kalibrációhoz nikkel polikristály mintát használtunk. A diffrakciós kép az 1. ábrán látható.

Ahogy azt a pordiffrakció elméletéből várjuk, a kapott képen valóban koncentrikus körök jelentek meg, ezek sugarát szeretnénk megmérni a kalibrációhoz. Ezt úgy tettük, hogy a meghúztuk a direkt nyalábon átmenő vízszintes tengelyt (sötétkék vonal), és leolvastuk a belső 7 koncentrikus körnek ezzel való metszéspontját. Ugyanahhoz a körhöz tartozó két metszéspont különbsége a kör átmérője, aminek fele a sugár. A mért értékeket az 1. táblázat tartalmazza.

Az (1) összefüggés alapján a koncentrikus körök sugara (R_i) és a síkseregtávolságok reciprokai $(1/d_i)$ között lineáris összefüggés van, és az arányossági tényező $L\lambda$. d_i értékei használt minta diffrakciós adatlapjáról [2] ismerjük, ezeket szintén tartalmazza az 1. táblázat. A mért sugarak, és síkseregreciprokok közötti összefüggést a 2. ábra ábrázolja. Az adatokra egyenest is illesztettünk

$$R_i = a \cdot \frac{1}{d_i} + b \tag{2}$$

egyenlettel. Az illesztési paraméterek kapott értékei: $a = (368, 6 \pm 1, 9)$ pxÅ és $b = (-1, 7 \pm 1, 7)$ px.

i	x_1 [px]	$x_2 [px]$	R_i [px]	d_i [Å]	$1/d_i \left[\text{\AA}^{-1} \right]$
1	555	912	178,5	2,037180	$0,\!490875$
2	526	942	208,0	1,764250	0,566813
3	440	1027	293,5	1,247510	$0,\!801597$
4	390	1077	$_{343,5}$	1,063880	$0,\!939956$
5	373	1097	362,0	1,018590	$0,\!981749$
6	318	1152	417,0	0,882125	1,133626
7	283	1188	452,5	0,809493	1,235341

1. táblázat. A polikristály diffrakciójában lévő koncentrikus körök mért sugarai, valamint a nikkelrácsban lévő síkseregek között lévő távolságok ismert adatai

2. ábra. A nikkel polikristály-diffrakciós ábráján lévő koncentrikus körök sugara a síkseregtávolság-reciprokok függvényében

Ezen értékek ismeretében már tudunk távolságot mérni az ábrákon a (2) képlet használatával.

3. Összetett minta vizsgálata

3.1. Indexelés

A minták indexelését úgy végeztük el, hogy minden felvételen megkerestük a legvastagabb diffrakciós pontot (ez a direkt nyaláb, O), és ezen kívül három másikat (A, B, C). A felvételen megmérhetők a kiválasztott nyalábok távolsa a direkt nyalábtól, ezek alapján pedig azt, hogy az adott diffrakciós ponthoz tartozó valódi rácssíktávolság milyen messze van a direkt nyaláb által metszett ponttól (d). A kiszámolt d-értékekből az Al₂O₃ és a GaN diffrakciós adatlapjáról leolvashatuk [3], hogy mely indexek tartoznak az adott ponthoz. Mivel jelen esetben a többszörös szórás nem hanyagolható el, ezért az ábrákon előfordultak olyan pontok, amik egyébként tiltott reflexiókhoz tartoznának. Az ehhez tartozó d-értékeket nem tartalmazzák a diffrakciós adatlapok, de ezek feléhez már tartozik megengedett indexelés, így az indexelés kiválasztásánál azokat a pontokat használtuk.

Mivel a pontokat minden felvétel esetében úgy választottam ki, hogy

$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC} \tag{3}$$

teljesüljön, ezért a kapott indexelésnek is olyannak kell lennie, hogy a vektorösszeadás az indexek szintjén is teljesüljön, azaz:

$$h_A + h_B = h_C \tag{4}$$

$$k_A + k_B = k_C \tag{5}$$

$$l_A + l_B = l_C \tag{6}$$

Ezek kívül, mivel a minták kristályszerkezete hexagonális, ezért célszerű átszámolni a háromindexes (hkl) Millerindexelést a négyindexes (hkil) Miller–Bravais-indexelésre, amely a hatszögrács természetes tengelyeihez igazodik, így jobban látszódnak róla a szimmetriatulajdonságok. Ezt kiszámolni egyszerűen a

$$i = -(h+k) \tag{7}$$

képlettel lehet.

Az indexelt felvételeket, és az indexelés adatait a 3-8. ábrák mutatják.

pont	x [px]	y [px]	R [px]	d [Å]	d_{hkl} [Å]	hkl	hkil
0	793	627	_	_	_	_	_
A	880	737	140	$2,\!60$	$2,\!59$	002	0002
В	688	708	132	2,74	2,76	100	$10\overline{1}0$
C	776	820	193	$1,\!87$	1,884	102	$10\overline{1}2$

3. ábra. A GaN rétegről készült első diffrakciós felvétel.

pont	x [px]	y [px]	R [px]	d [Å]	d_{hkl} [Å]	hkl	hkil
0	812	626	_	_	_	_	_
A	917	758	169	2,16	2,165	006	0006
В	689	722	156	2,34	2,379	110	$11\overline{2}0$
C	796	855	230	$1,\!59$	1,601	116	$11\overline{2}2$

4. ábra. A $\mathrm{Al}_2\mathrm{O}_3$ rétegről készült első diffrakciós felvétel.

pont	x [px]	y [px]	R [px]	d [Å]	d_{hkl} [Å]	hkl	hkil
0	798	615	_	_	_	_	_
GaN A	885	727	142	2,56	2,59	002	0002
GaN B	693	698	134	2,71	2,76	100	$10\overline{1}0$
GaN C	781	809	194	1,88	1,884	102	$00\overline{1}2$
$Al_2O_3 A$	903	749	170	2,14	$2,\!165$	006	0006
$Al_2O_3 B$	675	712	156	2,33	$2,\!379$	110	$11\overline{2}0$
$Al_2O_3 C$	782	844	229	1,59	$1,\!609$	116	$11\overline{2}6$

5. ábra. A közös tartományról készült első diffrakciós felvétel.

pont	x [px]	y [px]	R [px]	d [Å]	d_{hkl} [Å]	hkl	hkil
0	757	614	_	_	_	_	_
A	832	834	232	$1,\!57$	1,591	110	$11\overline{2}0$
В	623	659	141	$2,\!58$	$2,\!59$	002	0002
C	697	880	273	$1,\!34$	$1,\!357$	112	$11\overline{2}2$

6. ábra. A GaN rétegről készült második diffrakciós felvétel.

pont	x [px]	y [px]	R [px]	d [Å]	d_{hkl} [Å]	hkl	hkil
0	758	620	—	_	—	_	_
A	845	873	268	$1,\!37$	$1,\!374$	300	30 3 0
В	597	673	169	2,15	2,165	006	0006
C	682	926	315	$1,\!16$	$1,\!600$	306	$30\overline{3}6$

7. ábra. A $\mathrm{Al}_2\mathrm{O}_3$ rétegről készült második diffrakciós felvétel.

and the second
.0
<mark>,</mark> ∎x
C

pont	x [px]	y [px]	R [px]	d [Å]	d_{hkl} [Å]	hkl	hkil
0	768	614	_	_	_	_	_
GaN A	842	832	230	1,59	$1,\!591$	110	$11\overline{2}0$
GaN B	634	658	141	2,58	2,59	002	0002
GaN C	708	878	271	1,35	$1,\!357$	112	$11\overline{2}2$
$Al_2O_3 A$	854	867	267	$1,\!37$	1,374	300	$30\overline{3}0$
$Al_2O_3 B$	607	667	169	2,15	$2,\!165$	006	0006
$Al_2O_3 C$	692	921	316	1,16	1,600	306	$30\overline{3}6$

8. ábra. A közös tartományról készült második diffrakciós felvétel.

Felvétel	$(hkl)_A$	$(hkl)_B$	[uvw]	[uvtw]
GaN 1	002	100	010	$1\overline{2}10$
$Al_2O_3 1$	006	110	110	$1\overline{1}00$
közös 1 - GaN	002	100	010	$1\overline{2}10$
közös 1 - Al_2O_3	006	110	110	$1\overline{1}00$
GaN 2	110	002	110	$\overline{2}100$
$Al_2O_3 2$	300	006	010	$\overline{1}2\overline{1}0$
közös 2 -GaN	110	002	110	$\overline{2}100$
közös 2 -Al ₂ O ₃	300	006	010	$\overline{1}2\overline{1}0$

2. táblázat. A zónatengelyek iránya a különböző felvételeken.

3.2. Zónatengelyek

A feladatunk, hogy minden felvételen határozzuk meg a zónatengely irányát. Mivel a zónatengely merőleges az általunk vizsgált metszetre, biztos, hogy egy ezzel az iránnyal párhuzamos vektor kapunk, ha két, a síkban fekvő vektor keresztszorzatát. Az előző részben indexelt irányok megfelelők, így használjuk ezeket! Fegyelnünk kell még a zónatengely irányára is: a konvenció szerint a zónatengely mindig felék mutató vektor. A 3-8 ábrák mindegyikén úgy lettek felvéve a pontok, hogy a $\overrightarrow{OB} \times \overrightarrow{OA}$ keresztszorzat felénk mutasson, így a zónatengelyt ezzel a művelettel kaphatjuk meg.

A különböző felvételekhez tartozó zónatengelyirányokat a 2. táblázat tartalmazza, az indexelés úgy lett normálva, hogy az [uvw] értékek a lehető legkisebb egész számokat vegyék fel (a vektor nagysága nem számít, csak az iránya). Mivel hexagonális szerkezetű mintákról van szó, megadtuk a zónatengelyt négyes indexeléssel is. Mivel a zónatengely vektora valódi rácsvektor, ezért az átszámítás más, mint a reciprokrács vektorainál. Az [uvw] vektorhoz tartozó négyes [u'v't'w'] irány:

$$u' = \frac{1}{3} (2u - v)$$

$$v' = \frac{1}{3} (2v - u)$$

$$t' = -\frac{1}{3} (u + v)$$

$$w' = w$$

(8)

3.3. Közös irány, és az orientáció

Nézzük meg az első metszetről készült képeket (3-5 ábrák)! Látható, hogy az A diffrakciós ponthoz tartozó reciprokrácsvektorok párhuzamosok a GaN és az Al₂O₃ esetére, ugyanis a két Miller-Bravais-indexek: (0002) és (0006). Ez tehát azt jelenti, hogy ez az irány (azaz a z-irány) közös a hordozóban és a rétegben.

Azt is láthatjuk, hogy a *B*-hez tartozó reciprokrácsvektorok mindkét esetben merőlegesek az előbb megtalált közös tengelyre, hiszen, a hozzájuk tartozó Miller–Bravaisindesek: (1010) és (1120), vagyis egyiknek sincs *z*-irányú komponense. Ugyanakkor a Miller–Bravais-indexelésből az is látszik, hogy az indexek típusa nem egyezik meg, vagyis a két különböző szerkezet egymáshoz képest el van forgatva, a *z*-tengely mentén. Feladatunk meghatározni, hogy mekkora a szöge ennek az elforgatásnak.

Az elforgatás szögét meghatározni az alábbi képlettel lehet [4]:

$$\cos\varphi = \frac{hd + ke + \frac{1}{2}(he + kd) + \frac{3}{4}\lg(a/c)^2}{\sqrt{h^2 + k^2 + hk + \frac{3}{4}l^2(a/c)^2}}\sqrt{d^2 + e^2 + de + \frac{3}{4}g^2(a/c)^2}}$$
(9)

ahol a két elforgatott struktúra közös tengelyére merőleges indexelés esetünkben $(hkil) = (10\overline{10})$ és $(defg) = (11\overline{20})$, a két rácsparaméter: a = 3,186 és c = 4,758. Ezeket behelyettesítve, az alábbi eredményt kapjuk:

$$\cos\varphi = 0,8792 \qquad \Longrightarrow \qquad \varphi = 28,5^{\circ} \approx 30^{\circ} \tag{10}$$

Mivel az anyagok szabályos hatszögrács szerkezetűek, ezért valószínű, hogy a kapott 28,5° érték valójában a szimmetriába beépülni tudó 30°-ot jelent, mérési hibával terhelve. Így tehát kijelenthetjük, hogy a réteg orientációja a hordozóhoz képest 30°-kal van elforgatva.

Hivatkozások

- [1] Lábár János. Transzmissziós elektronmikroszkópia link
- [2] A nikkel polikristály diffrakciós adatlapja. link
- [3] Az Al_2O_3 és a GaN diffrakciós adatlapját tartalmazó feladatleírás. link
- [4] Edington, Jeffrey William. Electron diffraction in the electron microscipe. Appendix 2. 1975. link