Modern fizika laboratórium

13. mérés

Mérés idöpontja: 2018.04.16. (hétfő délután)

$Molekula modellez \acute{e}s$

Mérést végezte:

Asztalos Bogdán Móricz Ádám

1. A mérés célja

A kvantummechanika alapegyenlete a Schrödinger-egyenlet, ez azonban csak a nagyon egyszerű rendszerekre oldható meg egzaktul. Emiatt, a bonyolultabb rendszerek vizsgálatához, (mint amilyenek a molekulák) közelítő számításokat kell végezni, amiket – bonyolultságuk miatt – számítógéppel végeznek el. A mérés során az ilyen közelítő számításokat végző *Spartan* nevű program segítségével vizsgáltuk egyszerűbb molekulák szerkezetét.

2. Elméleti háttér

Egy N_n atommagból és N_e elektronból álló molekula stacionárius Schrödiner-egyenlete az alábbi alakban írható fel:

$$\hat{H}\Psi\left(\vec{R}_{1},\ldots,\vec{R}_{N_{n}},\vec{r}_{1},\ldots,\vec{r}_{N_{e}}\right) = E\Psi\left(\vec{R}_{1},\ldots,\vec{R}_{N_{n}},\vec{r}_{1},\ldots,\vec{r}_{N_{e}}\right)$$
(1)

ahol $\vec{R_{\alpha}}$ a magok, $\vec{r_i}$ az elektronok koordinátáit jelöli, \hat{H} a rendszer Hamilton-operátora, *E* pedig az energiája.

A Hamilton-operátor a kinetikus és a potenciális energiák összege, ahol a potenciális energiát a mag-mag, a mag-elektron és az elektron-elektron kölcsönhatások adják. Mivel molekulák esetében sok mag és sok elektron van, ezért a teljes egyenlet bonyolulttá válik, ezért nem tudjuk egzaktul megoldani. Hogy mégis tudjunk mondani valamit a rendszerről, különböző közelítési módszerek születtek. Ezek közül a mérés során kettőt használtunk, az egyszerűbb molekuláknál a Hartree–Fock-, a bonyolultabbaknál a szemiempirikus közelítést.

A Hartree–Fock-közelítés lényege, hogy feltesszük, hogy a sokelektronos hullámfüggvény egyelektronos hullámfüggvények szorzatainak az összegeként áll elő. A Pauli-elvet által előírt antiszimmetrikusságot úgy elégítjük ki, hogy az elektronok hullámfüggvényét az alábbi módon, Salter-determináns formájában keressük:

$$\Psi(x_1, x_2, \dots, x_{N_e}) = \frac{1}{\sqrt{N_e!}} \begin{vmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_{N_e}(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_{N_e}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_{N_e}) & \varphi_2(x_{N_e}) & \cdots & \varphi_{N_e}(x_{N_e}) \end{vmatrix}$$
(2)

Ha ezzel a próbafüggvénnyel képezzük a Hamilton-operátor várható értékét, akkor a variációs elv segítségével, ott ahol a várható érték minimális, megkaphatjuk az alapállapoti hullámfüggvény Slater-determinánssal való legjobb közelítését. A variációs elv lényege, hogy ha paraméterezünk bizonyos próbafüggvényt, és vesszük a próbafüggvény várható értékét a Hamilton-operátorral, a várható érték legalább akkora, mint az alapállapoti energia. Tehát ha megkeressük azokat a paramétereket, amelyeknél a várható érték minimális, megfelelően választott próbafüggvény esetén jó közelítést kaphatunk az alapállapoti energiára.

Nagyméretű rendszerek leírására a nagy számításigény miatt a fenti közelítés nem alkalmazható, további egyszerűsítéseket kell tennünk. Az ún. szemiempirikus mószerek lényege, hogy kísérletekből származó paraméterek felhasználásával vagy egysezrűsített Hamilton-operátorral dolgoznak. Ennek a módszernek nagy előnye, hogy viszonlyag kevés számításigénye miatt akár ezernél is több atomból álló rendszerekre is alkalmazható. Az egyelektron-pályákat a Hartree–Fock-közelítésben véges bázis szerint fejtjük ki, jelen esetben több Gauss-pálya lineárkombinációjával dolgozunk. A közelítéseket $6-311+G^{**}$ (víz, H₂), illetve $3-31G^*$ (CO₂, benzol) bázisban számoljuk.

A vízmolekula opimális geometriáját is kellett számolnunk a feladatokban, az ehhez használt sémában először a potenciális energiát a szélsőérték közelében másodrendig sorbafejtjük. Ebben az elsőrendű tag a magokra ható erőket tartalmazó vektor, a másodrendű pedig az ún. Hess-mátrix. Ha tehát az adott pontban ismertek az erők, egy kicsit odébb menve is ki tudjuk pket számolni. Azt, hogy mennyivel kell arrébb mennünk, közelíthetjük a Hess-mátrix inverzének és az adott pontban ható erőnek a szorzatával. Így addig módosítgatjuk a geometriát, míg az erők nagysága egy bizonyos küszöbérték alá nem kerül. Az erők számolásához az ún. Hellman–Feyman-tételt használjuk:

$$\frac{\partial E}{\partial \alpha} = \left\langle \Psi_0 \left| \frac{\partial \hat{H}}{\partial \alpha} \right| \Psi_0 \right\rangle \tag{3}$$

Ha α valamelyik mag koordinátája, akkor a fenti mennyiség az adott mag
ra ható erő.

3. A mérés menete

A számításokat a Spartan nevű program segítségével végeztük. Ennek a grafikus felületével összeállítottuk a vizsgálni kívánt molekulát, beállítottuk, hogy milyen mennyiségekre vagyunk kíváncsiak, hogy milyen közelítést alkalmazzon valamint hogy milyen bázison fejtse ki az elektronpályákat, és elindítottuk a számolást. Kis idő múltán a program jelezte, hogy végzett, és megnézhettük az eredményeket. Az alábbiakban a program beállításait és végeredményeit képként beillesztjük és ezt megpróbáljuk az elméleti háttérrel kvalitatív módon magyarázni.

4. A mérési eredmények

4.1. Rezgési analízis használata struktúra optimálási problémákban.

4.1.1. A lineáris víz példája.

Először a lineáris vízmolekulát vizsgáltuk.

1. ábra. A lineáris vízmolekula

Az alábbi beállításokkal futtatuk le a programot.

S Calculatio	ons			? ×
Calculate:	Equilibrium Geometry with Density Functional	▼ at Ground ▼ state ▼ B3LYP ▼ 6-311	+G** 💌 in Vacuum	Pseudopotential
Start From:	Current 💌 ge	ometry		
Subject To:	Constraints	Frozen Atoms	Symmetry	Total Charge: Neutral 📥
Compute:	✓ IR	NMR	UV/vis	Multiplicity: Singlet 🛓
Print:	☑ Orbitals & Energies	Thermodynamics	Vibrational Modes	Atomic Charges
Options:				Converge
			Global Calculations 📝	OK Cancel Submit

2. ábra. A lineáris vízmolekulára beállított paraméterek

A rezgési módusok:

Frequency	Туре	Intensity	- IR Spectrum:
	Piu Piu Sg+ Su+	589.34 589.34 0.00 748.30	Draw Calculated Fit: Temp: Scale: Standard Reference Experimental Draw Experimental Draw Reference Amp: Steps: Make List
			Web site

3. ábra. A lineáris vízmolekulára rezgési módusai

Amint az ábráról látszik, a két π_u rezgési módus frekvenciája képzetes. Ezek azok a rezgési módusok, amikor a hidrogénatomok a molekula egyeneséből kitérve rezegnek. Ez azzal magyarázható a vízmolekula ideális alakja nem lineáris, hanem csak mi kényszerítettük rá, így ez az állapot instabil. A rezgések szempontjából ez az instabilitás úgy mutatkozik meg, hogy ha a hidrogének kitérnek az egyenesből, akkor azok nem térnek vissza. Az erők szempontjából ez úgy írható le, hogy az aktuális helyzetben a magokra ható erők kiejtik

egymást, de a potenciálfelületnek ez csak nyeregpontja. A rezgési módusok frekvenciáit a potenciálfelület K Hesse-mátrixának sajátértékeinek gyökeiből kapjuk, de mivel nyeregpontban lesz a mátrixnak negatív sajátéréke is, az ezekhez rendelhető módusok (azaz az instabilitás irányába eltérülést okozó módusok) frekvenciái képzetesek lesznek.

4.1.2. A vízmolekula

Ezután megvizsgáltuk az ideális geomátriájú vízmolekulát is. A relaxált struktúrájának kötésszögét (α) -és hosszát mértük (l_{O-H}).

$$\alpha = 105.07\tag{4}$$

$$l_{O-H} = 0.962 \tag{5}$$

Az alábbi beállításokkal futtattuk le a programot.

S Calculatio	ons			?
Calculate:	Equilibrium Geometry	at Ground 💌 state	G** 💌 in Vacuum	Pseudopotential
Start From:	Current 💌 geom	etry		
Subject To:	Constraints	Frozen Atoms	Symmetry	Total Charge: Neutral 💌
Compute:	☑ IR	NMR	UV/vis	Multiplicity: Singlet 🛓
Print:	☑ Orbitals & Energies	Thermodynamics	Vibrational Modes	Atomic Charges
Options:				Converge
			Global Calculations 📝 🛛 OK	Cancel Submit

4. ábra. A vízmolekulára beállított paraméterek

A molekula képe:

5. ábra. A vízmolekula

- 4.2. CO2 molekula alapállapoti tulajdonságainak meghatározása, rezgési és IR analízise.
- A CO_2 lineáris molakula.

6. ábra. A lineáris szén-dioxid

Az alábbi beállításokkal futtattuk le a programot.

S Calculatio	ons	-		? X
Calculate:	Equilibrium Geometry with Density Functional	▼ at Ground ▼ state ▼ B3LYP ▼ 6-31G	* 💽 in Vacuum	Pseudopotential
Start From:	Current 💌 g	eometry		
Subject To:	Constraints	Frozen Atoms	V Symmetry	Total Charge: Neutral 🚽
Compute:	✓ IR	NMR	UV/vis	Multiplicity: Singlet 丈
Print:	☑ Orbitals & Energies	Thermodynamics	Vibrational Modes	Atomic Charges
Options:				Converge
			Global Calculations 📝	OK Cancel Submit

7. ábra. A szén-dioxid molekulára beállított paraméterek

A rezgési módusok.

Spectra			
IR NMR 1	JV/vis Type Piu Piu Sg+ Su+	Intensity 30.72 30.72 0.00 545.89	IR Spectrum: Draw Calculated Fit: Temp: Scale: Standard Reference Experimental Draw Experimental Draw Reference Amp: Steps: Make List Experimental Data From: Web site Cocol file

8. ábra. A szén-dioxid molekula spektruma

Mint látható, a σ^- módushoz tartozó módus intenzitása 0, tehát ez a rezgési módus egyáltalán nem vesz részt a rezgésben. Ennek oka, hogy a rezgés során a többi módusnál a molekula elektronsűrűség helyfüggvénye nem szimmetrikusan változik meg, a σ^- módus esetében viszont (ahol a két oxigénmag a szénhez képest szimmetrikusan mozdul el) igen, így a molekula dipólmomentuma nem változik. A rezgés során viszont pontosan annak köszönhető, hogy a molekulát érő infravörös sugárzás befolyásolja a dipólmomentumot, így a dipólmomentumot nem változtató σ^- módus egyáltalán nem gerjesztódik.

A molekula jellemző adatai.

9. ábra. A szén-dioxid molekula jellemző adatai

4.3. H $_2$ molekula elektronszerkezetének vizsgálata

A ${\cal H}_2$ molekula.

10. ábra. A hidrogénmolekula.

Az alábbi beállításokkal futtattuk le a programot.

S Calculatio	DNS			
Calculate:	Equilibrium Geometry with Hartree-Fock	▼ at Ground ▼ state ▼ 6-311G*	🗴 in Vacuum 💽	Pseudopotential
Start From:	Current	geometry		
Subject To:	Constraints	Frozen Atoms	Symmetry	Total Charge: Neutral 🚔
Compute:	IR IR	NMR	UV/vis	Multiplicity: Singlet 卖
Print:	✓ Orbitals & Energies	Thermodynamics	Vibrational Modes	Atomic Charges
Options:				Converge
			Global Calculations 🔽 🛛 📿	OK Cancel Submit

11. ábra. A hidrogénmolekulára beállított paraméterek

A molekulára jellemző rezgési móduok:

S h2_22:M0001						?	x
Output	•						
MO:		1	2	3	4	5	~
Eigenval	ues:	-0.59852	0.17008	0.30544	0.65516	2.40269	
	(ev)	-16.28651	4.62824	8.31154	17.82793	65.38046	
		Sg+	Su+	Sg+	Su+	Sg+	
1 H2	S	0.19311	0.08003	-0.04986	0.08831	1.08010	
2 H2	s	0.29490	-0.04227	-0.70838	1.75662	-1.21689	
3 н2	s	0.12565	2.30115	0.84657	-2.21705	0.48663	
4 H1	s	0.19311	-0.08003	-0.04986	-0.08831	1.08010	
5 H1	s	0.29490	0.04227	-0.70838	-1.75662	-1.21689	=
6 H1	s	0.12565	-2.30115	0.84657	2.21705	0.48663	
MO:		6					
Eigenval	ues:	2.76059					
	(ev)	75.11958					
		Su+					
1 H2	s	-1.13322					
2 H2	s	1.80247					
3 H2	s	-1.20333					
4 H1	s	1.13322					
5 H1	s	-1.80247					
6 H1	s	1.20333					+
•							•

12. ábra. A ${\rm H}_2$ molekula jellemző adatai

 \bigcirc

13. ábra. A hidorgénmolekula HOMO ábrázolása.

14. ábra. A hidorgénmolekula LUMO0 ábrázolása.

15. ábra. A hidorgénmolekula LUMO1 ábrázolása.

16. ábra. A hidorgénmolekula LUMO2 ábrázolása.

17. ábra. A hidorgénmolekula LUMO3 ábrázolása.

18. ábra. A hidorgénmolekula LUMO4 ábrázolása.

4.4. Izotópeffektus vizsgálata szimulált IR spektrumokkal

A benzol molekula.

19. ábra. A benzolmolekula.

Az alábbi beállításokkal futtattuk le a programot.

G Calculations									
Calculate:	Equilibrium Geometry with Density Functional	at Ground 💌 state	▼ in Vacuum	Pseudopotential					
Start From:	Current 💌 geor	netry							
Subject To:	Constraints	Frozen Atoms	Symmetry	Total Charge: Neutral 🚔					
Compute:	☑ IR	NMR	UV/vis	Multiplicity: Singlet 🚔					
Print:	🔽 Orbitals & Energies	Thermodynamics	Vibrational Modes	✓ Atomic Charges					
Options:				Converge					
			Global Calculations 📝 🛛 OK	Cancel Submit					

20. ábra. A benzolmolekulára beállított paraméterek

A rezgési módusok.

Spectra			x
IR NMR	UV/vis		
Frequency	Туре	Intensity	-IR Spectrum:
415	E2u	0.00	Draw Calculated
15	E2u	0.00	Bran carculated
623	E2g	0.00	Fit:
623	E2g	0.00	
692	A2u	77.49	Temp:
717	B2g	0.00	Scale:
863	E1g	0.00	Scale.
863	E1g	0.00	
968	E2u	0.00	Standard Reference
968	E2u	0.00	
1009	B2g	0.00	Experimental
1020	B1u	0.00	
1021	A1g	0.00	Draw Experimental
- 1070	E1u	3.28	
1070	E1u	3.31	Draw Reference
- 1188	B2u	0.00	
1209	E2g	0.00	
1209	E2g	0.00	
1358	B2u	0.00	
1388	A2g	0.00	Amp:
1533	E1u	6.55	Stens:
1533	E1u	6.45	20002
1657	E2g	0.00	Make List
1657	E2g	0.00	
3175	B1u	0.00	
3184	E2g	0.00	
3184	E2g	0.00	
3200	E1u	51.94	Experimental Data From:
3200	E1u	51.95	Web site
3211	A1g	0.00	 Local file
L			

21. ábra. A benzolmolekula rezgései

Az ábrán látható a 4 nem-degenerál rezgési módus.

22. ábra. A benzolmolekula rezgései

A rezgési módusok.

quency	Туре	Intensity	- IR Spectrum:
387	E2u	0.00	Draw Calculated
387	E2u	0.00	Diaw calculated
544	A2u	37.57	- Fit:
609	E2g	0.00	
609	E2g	0.00	Temp:
713	B2g	11.57	Scale:
717	E1g	0.00	Scale.
717	E1g	0.00	
856	???	2.15	Standard Reference
856	???	2.15	
929	???	0.00	Experimental
929	???	0.00	
931	B2g	10.49	Draw Experimental
933	B2u	0.00	braw Experimental
977	???	0.00	Draw Reference
1020	???	0.00	
1130	???	1.09	
1130	???	1.11	L
1310	A2g	0.00	
1361	???	0.00	Amp:
1467	???	3.75	Stang
1467	???	3.68	Steps:
1636	E2g	0.07	Makelist
1636	E2g	0.07	indice core
2360	???	0.00	
2360	???	14.40	
2360	???	14.38	
3192	???	26.31	Experimental Data From:
3192	???	26.31	Mah sita
3193	???	0.00	VVeb site

23. ábra. A benzolmolekula rezgései

Az ábrán látható a 8 nem-degenerál rezgési módus.

 \bigcirc

24. ábra. A benzolmolekula rezgései

Tartalomjegyzék

1.	A mérés célja	1
2.	Elméleti háttér	1
3.	A mérés menete	2
4.	A mérési eredmények	2
	4.1. Rezgési analízis használata struktúra optimálási problémákban.	2
	4.1.1. A lineáris víz példája.	2
	4.1.2. A vízmolekula	5
	4.2. CO_2 molekula alapállapoti tulajdonságainak meghatározása, rezgési és IR	
	analízise	6
	4.3. H_2 molekula elektronszerkezetének vizsgálata	8
	4.4. Izotópeffektus vizsgálata szimulált IR spektrumokkal	13